Search results for "Magnetic semiconductor"

showing 10 items of 31 documents

On the theory of domain structure in ferromagnetic phase of diluted magnetic semiconductors

2006

Abstract We present a comprehensive analysis of domain structure formation in ferromagnetic phase of diluted magnetic semiconductors (DMS) of p-type. Our analysis is carried out on the base of effective magnetic free energy of DMS calculated by us earlier [Yu.G. Semenov, V.A. Stephanovich, Phys. Rev. B 67 (2003) 195203]. This free energy, substituting DMS (a disordered magnet) by effective ordered substance, permits to apply the standard phenomenological approach to domain structure calculation. Using coupled system of Maxwell equations with those obtained by minimization of above free energy functional, we show the existence of critical ratio ν cr of concentration of charge carriers and ma…

Physicssymbols.namesakeMagnetic domainCondensed matter physicsMaxwell's equationsFerromagnetismMagnetPhase (matter)symbolsGeneral Physics and AstronomyCharge carrierMagnetic semiconductorFinite thicknessPhysics Letters A
researchProduct

The enhancement of ferromagnetism in uniaxially stressed diluted magnetic semiconductors

2003

We predict a new mechanism of enhancement of ferromagnetic phase transition temperature $T_c$ in uniaxially stressed diluted magnetic semiconductors (DMS) of p-type. Our prediction is based on comparative studies of both Heisenberg (inherent to undistorted DMS with cubic lattice) and Ising (which can be applied to strongly enough stressed DMS) models in a random field approximation permitting to take into account the spatial inhomogeneity of spin-spin interaction. Our calculations of phase diagrams show that area of parameters for existence of DMS-ferromagnetism in Ising model is much larger than that in Heisenberg model.

Condensed Matter - Materials SciencePhase transition temperatureMaterials scienceCondensed matter physicsHeisenberg modelMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Magnetic semiconductorCondensed Matter - Disordered Systems and Neural NetworksCondensed Matter::Materials ScienceFerromagnetismLattice (order)Ising modelCondensed Matter::Strongly Correlated ElectronsComputer Science::DatabasesPhase diagram
researchProduct

Photoinduced magnetization wave in diluted magnetic semiconductors

2006

We derive an evolutional equation incorporating the processes of spin-polarization transfer from an electron to a magnetic ion subsystem of a diluted magnetic semiconductor along with spin-lattice relaxation and spatial spin diffusion. Above equation has been obtained for nonequilibrium magnetization due to exchange scattering of photoexcited charge carriers by magnetic ions. We show that the mechanism of a band gap narrowing due to exchange scattering requires relatively low optical power to reach an optical bistability for pump frequency range close to crystal band gap. In a bulk crystal, only relatively small local area with essential magnetization enhancement can absorb optical power, t…

Magnetic anisotropyMagnetizationCondensed matter physicsSpin polarizationMagnetismBand gapChemistryRelaxation (NMR)Magnetic semiconductorOrbital magnetizationSPIE Proceedings
researchProduct

Surfactant-assisted synthesis of Cd1−xCoxS nanocluster alloys and their structural, optical and magnetic properties

2010

We report the synthesis of Co-doped CdS nanoclusters (Cd1−xCoxS) for different doping concentrations (x = 0.10, 0.20 and 0.30) and characterization of their structural, optical, and magnetic properties. The structural properties studied by X-ray diffraction revealed hexagonal-greenockite structure and a decrease of the lattice parameters (a and c) with doping, showing incorporation of Co in the lattice. The morphology of the nanoclusters was studied by scanning electron microscopy. The optical absorption studies, using diffused reflectance spectroscopy, revealed that Co doping modifies the absorption band edge. Ferromagnetic phase was observed in the magnetization measurements at room-tempe…

inorganic chemicalsAbsorption spectroscopyChemistryMechanical EngineeringDopingtechnology industry and agricultureMetals and AlloysAnalytical chemistryMagnetic semiconductorMicrostructureXANESNanoclustersCondensed Matter::Materials ScienceMagnetizationCrystallographyMechanics of MaterialsAbsorption bandMaterials Chemistrylipids (amino acids peptides and proteins)Condensed Matter::Strongly Correlated Electronshuman activitiesJournal of Alloys and Compounds
researchProduct

Half-Heusler compounds: novel materials for energy and spintronic applications

2012

Half-Heusler compounds are an impressive class of materials with a huge potential for different applications such as future energy applications and for spintronics. The semiconducting Heusler compounds can be identified by the number of valence electrons. The band gap can be tuned between 0 and 4 eV by the electronegativity difference of the constituents. Magnetism can be introduced in these compounds by using rare-earth elements, manganese or ‘electron’ doping. Thus, there is a great interest in the fields of thermoelectrics, solar cells and diluted magnetic semiconductors. The combination of different properties such as superconductivity and topological edge states leads to new multifunct…

010302 applied physicsMaterials scienceSpintronicsCondensed Matter::OtherBand gapMagnetismNanotechnology02 engineering and technologyNarrow-gap semiconductorMagnetic semiconductor021001 nanoscience & nanotechnologyCondensed Matter PhysicsThermoelectric materials01 natural sciences7. Clean energyElectronic Optical and Magnetic MaterialsElectronegativityCondensed Matter::Materials Science0103 physical sciencesMaterials ChemistryCondensed Matter::Strongly Correlated ElectronsElectrical and Electronic Engineering0210 nano-technologyValence electronSemiconductor Science and Technology
researchProduct

Probing the magnetic properties of cobalt–germanium nanocable arrays

2005

We report the synthesis of high density arrays of coaxial nanocables, consisting of germanium nanowires surrounded by cobalt nanotube sheaths, within anodic aluminium oxide membranes. The nanocable arrays were prepared using a supercritical fluid inclusion process, whereby the cobalt nanotubes were first deposited on the pore walls of the nanoporous membranes and subsequently filled with germanium to form coaxial nanocables. The composition and structure of the metal–semiconductor nanostructures was investigated by electron microscopy, energy dispersive X-ray mapping and X-ray diffraction at high angles. The magnetic properties of the co-axial nanocables were probed using a superconducting …

NanotubeMaterials sciencebusiness.industryNanowirechemistry.chemical_elementGermaniumNanotechnologyGeneral ChemistryMagnetic semiconductorlaw.inventionSQUIDSemiconductorchemistrylawMaterials ChemistryCoaxialbusinessCobaltJournal of Materials Chemistry
researchProduct

2008

ZnO doped with a few per cent (<10%) of magnetic ions such as Co exhibit room temperature (RT) ferromagnetism, transforming it into a very promising candidate for future spin electronic applications. We present x-ray magnetic circular dichroism (XMCD) spectroscopy, which has been used in total electron yield, total fluorescence yield, and reflection mode to investigate the origin of ferromagnetism in such diluted magnetic semiconductor materials in a surface, bulk and interface sensitive way, respectively. We investigated three different types of samples: ZnO doped with 5% Co, artificially layered films, and layered films with additional co-doping of 10% Li. These films are prepared by puls…

PhysicsCondensed matter physicsMagnetic circular dichroismDopingGeneral Physics and AstronomyMagnetic semiconductorlaw.inventionPulsed laser depositionSQUIDCondensed Matter::Materials ScienceParamagnetismFerromagnetismlawCondensed Matter::SuperconductivityCondensed Matter::Strongly Correlated ElectronsSpectroscopyNew Journal of Physics
researchProduct

Optical Absorption of Zinc Selenide Doped with Cobalt (Zn1-xCoxSe) under Hydrostatic Pressure

2000

Optical absorption of the diluted magnetic semiconductor Zn 1-x Co x Se (x = 0.02) has been measured at room temperature under hydrostatic pressure up to 14 GPa in a membrane diamond-anvil cell. We found two absorption features: (i) an absorption structure in the energy range 1.5 to 1.8 eV, with a negligible pressure shift (i.e. (0.45 ± 0.05) meV/GPa) which we have identified as the Co 2+ (3d 7 ) internal transition 4 A 2 (F) → 4 T 1 (P) and (ii) an onset in the energy range 2 to 2.7 eV which redshifts with pressure (dE/dP = (-8.1 ± 0.6) meV/GPa). We have attributed such absorption edge to charge transfer between the ZnSe valence band and the Co 2+ (3d 7 ) levels. On the assumption that tho…

chemistry.chemical_compoundAbsorption spectroscopyAbsorption edgeChemistryHydrostatic pressureDopingAnalytical chemistryZinc selenideMagnetic semiconductorCondensed Matter PhysicsAbsorption (electromagnetic radiation)Diamond anvil cellElectronic Optical and Magnetic Materialsphysica status solidi (a)
researchProduct

Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-HeuslerLiMnZ(Z=N,P,Si)

2015

Due to their similarities to metastable zinc-blende half-metals, we systematically examined the half-Heusler compounds $\ensuremath{\beta}\text{-LiMn}Z$ ($Z=\text{N},\text{P}$ and Si) for their electronic, magnetic, and stability properties at optimized lattice constants and strained lattice constants that exhibit half-metallic properties. We also report the other phases of the half-Heusler structure ($\ensuremath{\alpha}$ and $\ensuremath{\gamma}$ phases), but they are unlikely to be grown. The magnetic moments of these stable Li-based compounds are expected to reach as high as $4{\ensuremath{\mu}}_{\mathrm{B}}$ per unit cell when $Z=\text{Si}$ and $5{\ensuremath{\mu}}_{\mathrm{B}}$ per un…

PhysicsMagnetic momentCondensed matter physics02 engineering and technologyMagnetic semiconductorType (model theory)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsLattice constantMetastability0103 physical sciencesAntiferromagnetism010306 general physics0210 nano-technologyPnictogenSpin-½Physical Review B
researchProduct

Optical absorption of zinc selenide doped with cobalt (Zn1−xCoxSe) under hydrostatic pressure

2000

Abstract The optical absorption of the diluted magnetic semiconductor Zn1−xCOxSe (x = 0.02) has been measured at room temperature under hydrostatic pressure up to 14GPa in a membrane diamond-anvil cell. We found two absorption features: (i) an absorption structure in the energy range 1.6−1.8eV, with a negligible pressure shift (i.e., 0.45 ± 0.05 meV/GPa) which we have identified as the Co2+(3d7) internal transition 4A2(F)→+4T1(P) and (ii) an onset in the energy range 2−2.7eV which redshifts with pressure (−8.1±0.6meV/GPa). We have attributed such absorption edge to charge transfer between the ZnSe valence band and the Co2+(3d7) levels.

chemistry.chemical_compoundRange (particle radiation)chemistryAbsorption edgeDopingHydrostatic pressureAnalytical chemistrychemistry.chemical_elementZinc selenideMagnetic semiconductorCondensed Matter PhysicsAbsorption (electromagnetic radiation)CobaltHigh Pressure Research
researchProduct